hemingway is required for sperm flagella assembly and ciliary motility in Drosophila
نویسندگان
چکیده
Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.
منابع مشابه
Drosophila KAP Interacts with the Kinesin II Motor Subunit KLP64D to Assemble Chordotonal Sensory Cilia, but Not Sperm Tails
BACKGROUND Kinesin II-mediated anterograde intraflagellar transport (IFT) is essential for the assembly and maintenance of flagella and cilia in various cell types. Kinesin associated protein (KAP) is identified as the non-motor accessory subunit of Kinesin II, but its role in the corresponding motor function is not understood. RESULTS We show that mutations in the Drosophila KAP (DmKap) gene...
متن کاملCell Motility: Deaf Drosophila Keep the Beat
Intraflagellar transport is involved in the assembly of cilia and eukaryotic flagella. Two recent studies have shown that defects in intraflagellar transport prevent assembly of sensory cilia in Drosophila, leaving the fly deaf and uncoordinated. Surprisingly, the mutant sperm flagella have normal structure and motility.
متن کاملBug22 influences cilium morphology and the post-translational modification of ciliary microtubules
Cilia and flagella are organelles essential for motility and sensing of environmental stimuli. Depending on the cell type, cilia acquire a defined set of functions and, accordingly, are built with an appropriate length and molecular composition. Several ciliary proteins display a high degree of conservation throughout evolution and mutations in ciliary genes are associated with various diseases...
متن کاملHearing in Drosophila requires TilB, a conserved protein associated with ciliary motility.
Cilia were present in the earliest eukaryotic ancestor and underlie many biological processes ranging from cell motility and propulsion of extracellular fluids to sensory physiology. We investigated the contribution of the touch insensitive larva B (tilB) gene to cilia function in Drosophila melanogaster. Mutants of tilB exhibit dysfunction in sperm flagella and ciliated dendrites of chordotona...
متن کاملDrosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly.
Cilia and flagella play multiple essential roles in animal development and cell physiology. Defective cilium assembly or motility represents the etiological basis for a growing number of human diseases. Therefore, how cilia and flagella assemble and the processes that drive motility are essential for understanding these diseases. Here we show that Drosophila Bld10, the ortholog of Chlamydomonas...
متن کامل